
1 23

Journal of Scheduling

ISSN 1094-6136

J Sched
DOI 10.1007/s10951-015-0429-x

Ant colony systems for the single-
machine total weighted earliness tardiness
scheduling problem

Rym M’Hallah & Ali Alhajraf

1 23

Your article is protected by copyright and all

rights are held exclusively by Springer Science

+Business Media New York. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.

J Sched
DOI 10.1007/s10951-015-0429-x

Ant colony systems for the single-machine total weighted earliness
tardiness scheduling problem

Rym M’Hallah1 · Ali Alhajraf2

© Springer Science+Business Media New York 2015

Abstract Single-machine weighted earliness tardiness sche-
duling is a prevalent problem in just-in-time production
environments. Yet, the case with distinct due dates is strongly
NP-hard. Herein, it is approximately solved using ASV, an
ant colony-based system with a reduced number of ants and
of colonies and with daemon actions that explore the search
space around the ants using a variable neighborhood search
(VNS). The numerical investigation provides computational
proof of the utility of the daemon actions. In addition, it infers
that these latter can be applied either to the initial or to subse-
quent colonies. Furthermore, it highlights the importance of
using ant colony optimization as the multiple restart engine
of VNS. Finally, it shows that ASV obtains the optimum for
most small-sized instances. It has a 0.2 % average deviation
from the optimum over all benchmark instances.

Keywords Ant colony systems · Weighted earliness
tardiness · Single machine · Simulated annealing · Variable
neighborhood search

1 Introduction

Quick and prompt response to customers’ demand is the key
to success in many manufacturing and service industries such
as nursing, operating theaters, transportation, communica-

B Rym M’Hallah
rymmha@yahoo.com; rym.mhallah@ku.edu.kw

1 Department of Statistics and Operations Research, College of
Science, Kuwait University, P.O. Box 5969, 13060 Safat,
Kuwait

2 Biomedical Sciences Department, College of Nursing, Public
Authority for Applied Education and Training, P.O. Box
23167, 13062 Safat, Kuwait

tion, delivery, apparel, glass, and wood manufacturing. This
is particularly the case of evolving markets where competing
manufacturers have shifted from mass to just-in-time produc-
tion. Each strives to satisfy its customers’ demand on-time.
Missing a due-date may result in the loss of the client’s good-
will, a rushed delivery, or a heavy penalty whereas preparing
the order too early may cause undue handling, storage, and
in some instances product deterioration. For example, in fur-
niture manufacturing, cutting a set of wooden items too early
or too late can disrupt the work flow of subsequent stages and
affect the on-time delivery of the final products. This is also
prevalent in service industries such as health care. For exam-
ple, the early completion of an elective surgery may result in
blocking the operating room and delaying the next surgeries
while a tardy completion causes over time costs of surgical
staff and post anesthesia care unit nurses [15]. Similarly, a
nurse has a predefined set of tasks with each task having a
fixed duration and due date. S/he has to complete each task
on time and minimize its societal loss (i.e., its total cost to the
patient and hospital). These tasks may include administrating
medical treatments, observing and monitoring patients’ con-
ditions, escorting patients for X-ray or lab work, maintaining
records, being present during surgical procedures, etc. [16].
Thus, any schedule of a set of tasks should strive to minimize
the total weighted earliness and tardiness.

1.1 Problem definition

Scheduling a set N = {1, . . . , n} of n jobs on a single
machine with the objective of minimizing their total weighted
earliness tardiness is denoted 1|d j | ∑w j E j + w j Tj . Each
job is characterized by its processing time p j , due date d j ,

unit cost of earliness w j , and unit cost of tardiness w j . All
processing times and due dates are known, deterministic,
integer, and not necessarily equal. When in-process, a job is

123

Author's personal copy

J Sched

never preempted. The machine is ready at time zero. Once it
starts, the machine is never idle until it completes the n jobs. A
wide range of industrial and health care applications prohibit
the insertion of idle time for various reasons: exorbitant cost
of idle time, infeasibility, unavailable contingent resources,
high demand, and expensive operational/setup costs. When
the due dates are distinct, the insertion of idle time when tech-
nologically feasible can reduce the objective function value
[21]. In such a case, the application of a timing algorithm
inserts idle time optimally.

In addition to its prevalence as a real-world problem, the
1|d j | ∑ w j E j + w j Tj arises as a relaxation of scheduling
problems with more complex manufacturing environments
or with additional constraints as in a job shop [3]. Yet, it
is strongly NP-hard [25]. That is, no efficient algorithm
can solve medium or large-sized instances. Exact tech-
niques vary from branch and bound [9] to a recent dynamic
programming-based exact method [22] that solves problems
with up to 300 jobs. Muller-Hannemann and Sonnikow [17]
highlight the absence of approximation results, and show
that the problem is extremely hard to approximate using a
polynomial-time algorithm with a guaranteed worst-case per-
formance unless P = NP. A feasible solution to the problem is
a permutation of the n jobs. Thus, the search space consists
of n! distinct solutions.

This paper approximately solves the 1|d j | ∑w j E j +
w j Tj problem using an ant colony system. This latter uses a
limited size population. Its ants ensure the exploration while
the external daemon actions guarantee the exploitation. The
daemon actions consist of a variable neighborhood search
(VNS). The motivation of this design follows.

1.2 Motivation of solution approach

M’Hallah [12] describes a positional mathematical pro-
gramming model for the unweighted earliness tardiness
single-machine scheduling problem. She tackles the problem
using dominance criteria, hill climbing, simulated anneal-
ing (SA), and a genetic algorithm (GA), with all the four
components being essential to the convergence of the algo-
rithm toward near-global optima. She infers that the most
successful heuristics are those dotted with complementary
exploration and exploitation mechanisms. This complemen-
tarity is particularly essential for this problem. To be on time,
many jobs have to compete for the same time slots. In addi-
tion, upper bounds obtained via constructive heuristics and
lower bounds issued of mathematical programming relax-
ations have large optimality gaps.

M’Hallah and Alhajraf [14] address the unweighted prob-
lem using both an ant system and an ant system augmented
by a two-opt search around the best ants of each generation.
They undertake an extensive computational study to tune the
parameters of their heuristics. They conclude that their ant

colony system yields better solutions as the numbers of ants
and of colonies increase. This of course occurs at the cost of a
large runtime. They recommend the use of 5000 ants and 300
generations as a tradeoff between solution quality and run-
time. They attribute this unusually large size of the colony to
the myopic decisions of the ants when scheduling jobs on the
machine. The application of their ant colony system to larger
instances is questionable. In fact, their computational investi-
gation is limited to instances with up to 30 jobs. The problem
size is confined in part by Cplex’s convergence capability
toward an exact solution (for assessment) and by the pro-
hibitively large runtime of their heuristics. Their ant colony
system yields better solutions than their ant system thanks
to the two-opt intensification step that the former offers,
hinting to the fundamental role of local search in enhancing
the performance of ant colony optimization (ACO) heuris-
tics. In many applications, the initial and updated levels of
pheromone can not effectively and efficiently guide the ants’
movements unless deduced from local optima that are close
to the global one, resulting in the hybridization of ACO with
beam search [2], scatter search, tabu search [6], threshold
accepting [11], and neighborhood search [1].

Schaller and Valente [20] undertook a comparative study
of different heuristics for the unweighted earliness tardi-
ness flow shop problem, which is a generalization of the
unweighted single-machine case. Their GA outperforms
deterministic and stochastic neighborhood searches as well
as ACO. Yet, M’Hallah [13] showed that a multiple restart
VNS outperforms the GA of [20]. VNS investigates differ-
ent neighborhoods in quest of a (near-) global optimum.
It searches immediate neighborhoods via a descent search
technique; then, it adopts a more progressive search in neigh-
borhoods that are inaccessible from its current point. It
bounces from its current local solution to a new one when
it discovers a preferred solution or undertakes a predefined
number of successive searches without improvement. Hence,
VNS is not a trajectory emulating technique like SA. In addi-
tion, it does not risk being trapped in local minima as pairwise
exchange local search techniques do. The systematic steepest
descent within different neighborhood structures allows VNS
to outperform other search heuristics. It provides pertinent
knowledge about the problem behavior and characteristics.
In fact, VNS stipulates that any local optimum reveals some
useful information on the characteristic of the global one. In
many instances, the local and global optima share the same
values of many variables. However, it is hard to predict which
variables they are.

Despite the robustness of VNS with respect to the starting
point and its convergence toward near-optima within the first
few iterations of its outer loop, the multiple restart enhances
its chances of identifying the global optimum. In lieu of a
multiple restart, Tasgetiren et al. [23] opt for a particle swarm
optimization heuristic (for the minimal makespan/flowtime

123

Author's personal copy

J Sched

permutation flow shop). That is, the multiple restart can be
replaced by a population-based heuristic such as GA or ACO.

The choice of GA might turn out to be computation-
ally expensive especially that the single-machine case is
a relaxation of more complex problems, and thus, should
have relatively reduced run times. When run with a limited
size population, GA does not necessarily converge to near-
global minima. In addition, it requires a careful design of the
crossover operator.

The use of an ACO seems a more plausible alternative
as it is naturally adapted to preserving good blocks of the
solution, to maintaining relative orderings of the jobs, and
to applying a VNS intensification search. In a hybrid ACO–
VNS heuristic, VNS reinforces the choices of the surviving
ants of the colony. When each ant is subject to VNS, the
knowledge yielded by VNS is reflected in the structure of the
ants. It becomes the cumulated learning acquired by the ants,
and it is transmitted to the next colony via the pheromone
matrix. This matrix preserves and reinforces the good parts
of the near optima obtained by VNS and indirectly deter-
mines the variables that are common to the ant and to the
global optimum. The resulting ant colony system can be per-
ceived as a “guided” multiple neighborhood search initiated
from a multitude of focal points, where the solutions or ants
share some common good characteristics while being mildly
different from each other. Because VNS converges rapidly
toward near-global minima, the number of restarts need not
be very large. Thus, the proposed ant colony system uses
limited numbers of ants and of generations.

The choice of a hybrid ACO–VNS heuristic is further
motivated by Behnamian et al.’s [1] ACO which outperforms
a random key GA for the unweighted earliness tardiness
hybrid flow shop with setup times. Their ACO subjects every
ant of the colony to a stochastic VNS. The stochastic compo-
nent of the search, corresponding to the outer loop of VNS, is
an SA. This choice seems contradictory to the purpose of the
outer loop, which is supposed to identify an unexplored area
of the search space. The inner loop is a variable neighbor-
hood descent. Their ACO performs better than their random
key GA for equal runtime with the GA using 100 chromo-
somes, but the size of the ant colony is not stated. In addition,
it is not clear how well either algorithm performs in absolute
terms (i.e., with respect to the optimum).

To build neighborhoods and moves, existing search meth-
ods use problem-dependent characteristics such as those
involving the rolling backward search algorithm [7] and the
dynamic heuristic [10], or those applying priority indices
[26] and smallest value position [23], or those using dif-
ferent structures and dominance criteria [12]. However, as
the problem at hand is a relaxation to numerous scheduling
problems, the neighborhoods are built independently of the
scheduling environment while being geared toward earliness
tardiness objective function types. Moves from the literature

are based on job insertion, job swaps, and job order inversion
[19]. Herein, the proposed neighborhoods follow the trend in
the literature while targeting efficacy and efficiency.

1.3 Contribution and outline

This paper proposes an ACO–VNS heuristic for the 1|d j | ∑
w j E j + w j Tj . To highlight the effectiveness of the heuris-
tic, the paper compares the performance of three ant colony
systems of limited colony size but different external daemon
actions. The first daemon action is a pairwise exchange. It
consists of deterministic swaps of a pair of jobs. The second
is an SA. It involves a stochastic swap of jobs. The third is
a VNS that uses three neighborhoods, as recommended by
Rocha et al. [19], in increasing order of complexity and of
perturbation size, while limiting the structural modifications
of the solutions.

In addition to providing an immediate precedence-based
mathematical formulation of the problem, the paper’s con-
tribution is threefold. First, it provides computational proof
of (i) the importance of the exploitation undertaken by the
daemon actions and of (ii) the diversification brought up
by the ant colony. Second, it indicates that it is possible to
have a “successful”ACO with a limited number of ants and
colonies. Third, it suggests that ACO–VNS is a good approx-
imate approach since it yields (near-)global minima for all
tested instances with a 1.0020 mean ratio of its solution to
the optimum.

This paper is organized as follows. Section 2 provides
a mathematical formulation of the problem. Section 3
describes a generic ACO. Section 4 details the proposed ACO
systems. Section 5 provides computational support for the
design of ACO–VNS highlighting the success of VNS as the
intensification mechanism and of ACO as the diversification
strategy. In addition, it evaluates the performance of ACO–
VNS. Finally, Sect. 6 is a summary.

2 Problem formulation

Let job 0 be a fictitious job that precedes the first job on
the machine, and N 0 = N ∪ {0}. Let x jk, j ∈ N 0, k ∈
N , k �= j, equal 1 if job j immediately precedes job k, and
0 otherwise. Let S j , E j , and Tj , j ∈ N , denote, respec-
tively, the starting time, earliness, and tardiness of job j,
and C j , j ∈ N 0, denote the completion time of job j.
C j , j ∈ N , is the sum of the starting and processing times of
job j, while C0, the completion time of the fictitious job, cor-
responds to the starting time of the machine. Job j, j ∈ N ,

is early if C j ≤ d j ; its earliness E j = max{0, d j − C j }. It
is tardy if C j > d j ; its tardiness Tj = max{0, C j − d j }.

123

Author's personal copy

J Sched

1|d j | ∑ w j E j + w j Tj is modeled as an immediate
precedence-based mixed integer program with n2 binary
variables, 4n + 1 positive variables, and (5n2 + 7n + 2)/2
functional constraints:

z = min
∑

j∈N

w j E j + w j Tj (1)

C j − d j = Tj − E j j ∈ N (2)

C j = S j + p j j ∈ N (3)

Sk + M(1 − x jk) ≥ C j j ∈ N 0, k ∈ N , k �= j (4)

Sk − M(1 − x jk) ≤ C j j ∈ N 0, k ∈ N , k �= j (5)

xk j + x jk ≤ 1 j ∈ N 0, k ∈ N , k < j (6)
∑

j ∈ N 0

k �= j

x jk = 1 k ∈ N (7)

∑

k ∈ N
k �= j

x jk ≤ 1 j ∈ N 0 (8)

x jk ∈ {0, 1} j ∈ N 0, k ∈ N , k �= j (9)

S j , C j , E j , Tj integer j ∈ N (10)

C0 integer, (11)

where M is a large positive number such that M → ∞.

Equation (1) minimizes the total weighted earliness tardi-
ness. Equation (2) sets the lateness of job j as the difference
between its completion time and its due date. The lateness
equals the tardiness if the job is tardy, zero if the job is on-
time, and the negative of earliness if the job is early. There
are n of these equations. Equation (3) sets the completion
time of job j equal to the sum of its starting and processing
times. There are n of these equations. Equations (4) and (5)
set the completion time of j equal to the starting time of k if j
immediately precedes k and are redundant otherwise. There
are n2 of each of these constraints. Equation (6) reinforces the
precedence relations between any pair of jobs k and j. Either
k immediately precedes j or j immediately precedes k, or
neither relation holds. These n(n+1)

2 constraints reduce the
symmetry of the search space, but have no functional utility.
Equation (7) forces a job k ∈ N to have exactly one immedi-
ate predecessor. There are n constraints of this type whereas
Eq. (8) limits the number of immediate successors of a job
j ∈ N 0 to at most one job since the last job scheduled on
the machine has no successor. There are n + 1 of these con-
straints. Equation (9) declares x jk as binary variables. Finally,
Eq. (10) declares the starting time, completion time, earli-
ness and tardiness of job j, j ∈ N , positive integers while
Eq. (11) sets the starting time of the machine positive integer.
Equations (10) and (11) can be replaced by non-negativity
constraints when the processing times and due dates are all

integers. In that case, there exists at least one optimal solution
with integer values for all the four variables.

When the machine must start at time zero, Eq. (11) is
replaced by

C0 = 0 (12)

to force the starting time of the machine to be zero. When the
jobs have release times, the machine may have to start later
than zero to avoid idle time. Subsequently, the above model
is augmented by:

C j ≥ r j , (13)

j ∈ N 0, where r0 = min
j∈N

{r j }. Finally, when idle time is

allowed, Eq. (5) is dropped from the model.

3 ACO

ACO, which is inspired by the foraging behavior of real ants,
is a discrete optimization meta-heuristic that converges to
optimality under certain conditions. It has an initialization, an
iterative, and a stopping step. The initialization step generates
a colony A of m ants, where each ant corresponds to a random
feasible solution. In the absence of a pheromone trail that
guides them, ants move randomly; thus, they follow random
paths in the search space.

The colony is updated at every generation g with the
new colony reinforcing the “good” traits of the best cur-
rent solution(s). This reinforcement is guaranteed via the
cooperation of the ants. In nature, ants identify the short-
est path between their nest and a food source by exchanging
information regarding the food source with other ants. The
information is channeled amongst the ants via the pheromone
each ant deposits during its traveling between the nest and
the food source. The more traveled a path is, the more
pheromone is deposited on it. Thus, despite the natural evap-
oration of pheromone, paths with heavy traffic maintain high
pheromone levels. They remain attractive to ants in the ants’
next ventures for food. Ants might choose to ignore the
acquired knowledge (or learned desirability in the form of
deposited pheromone) and discover either new paths or paths
with low pheromone deposit. When faced with many paths,
an ant chooses its path probabilistically, i.e., with a proba-
bility that is a function of the amounts of pheromone on the
alternative trails and of the worth of each path (according to
its own perception). The weighted function value reflects the
ant’s trade-off between the exploration of new connections
and the exploitation of available information.

Once the colony is updated, the algorithm updates the
pheromone level of each path of the trail by depositing a

123

Author's personal copy

J Sched

pheromone amount that reflects the frequency of usage of that
specific path across all ants of the colony. Subsequently, each
path is subject to a constant evaporation rate of its pheromone
level. Pheromone evaporation limits the chances of stagna-
tion of the algorithm. The aforementioned steps are repeated
until the algorithm reaches its stopping criterion: a fixed num-
ber of generations G, a time limit, or a number of iterations
without improvement.

Some variations update the pheromone level at every move
of every ant through deposit and/or evaporation (mimicking
the effect of time on real life colonies). Others apply dae-
mon actions that are external factors out of the control of
ants such as wind, floods, predators, etc. They are similar to
environmental phenomena in nature. They vary from local
search procedures to fixing approaches to biased pheromone
deposit/evaporation [4,8,23].

A survey of ant colony applications to scheduling prob-
lems [24] reveals that most approaches (36 out of 54) are
based on ant systems, with fewer (10 out 54) using ant colony
systems and the rest using Max–Min ant systems. It distin-
guishes two ways of coding the solution: job to position
and job to job, with the first type of coding mostly used
in flow shops and the second predominant in all manufac-
turing environments. Based on this classification, the design
of the proposed ACO uses a job to position coding. This
choice is prompted by the design of the heuristic which pur-
posely avoids the use of precedence relations between jobs
and by the fact that the single-machine environment is a spe-
cial case of the flow shop. The survey further establishes a
set of guidelines for designing ant colony-based approaches.
It recommends the use of a dynamic visibility function that
is updated as the ant constructs the solution, and empha-
sizes the importance of the initialization of the pheromone
levels. The proposed ACO abides to these recommenda-
tions.

4 The proposed ant colony systems

An ant a ∈ A is constructed as follows. Initially, a has all
its positions empty and its jobs free, i.e., its set of already
positioned jobs N a = ∅ and its set of free jobs Na = N .

The sets N a and Na are complementary: N a ⋃
N a = N

and Na ∩ N a = ∅. When it moves from a position [i] to a
position [i + 1], ant a assigns a job j ∈ Na to its position
[i], i = 1, . . . , n. It removes j from Na and appends it to N a .

In this sense, Na constitutes the candidate jobs for position
[i]. Ant a stops its moves when it schedules all n jobs. Using
this definition of ants, the ACO’s three steps, summarized in
Algorithm 1, proceed as follows.

Algorithm 1 ACO pseudo code
Input

• N , a set of n jobs.
• G, the number of colonies.
• m, the size of the colony (i.e., the number of ants of the colony).

Output
• A (near-) global optimum a∗ of cost za∗ .

1. Initialization
1.1 Set the generation counter g = 0.

1.2 Create an initial colony A of size m.

1.3 Set the best solution a∗ to the ant a ∈ A with the least
weighted earliness tardiness.

1.4 Initialize the pheromone level π(0) using (a subset of) the
colony A, and set π(1) = π(0).

2. Iterative Step
2.1 Set g = g + 1.

2.2 Build a colony of ants while accounting for π(g), the acquired
knowledge, and η(g), the attractiveness, and applying a
dynamic visibility function.

2.3 Merge the colonies of generations g and (g − 1), and retain
the best m ants.

2.4 Update the optimal solution a∗.
2.5 Determine the pheromone level π(g+1) accounting for

pheromone evaporation/deposit.
3. Stopping Criterion

If g < G, goto Step 2.

Step 1: Initialization The initial colony A (i.e., g = 0) con-
sists in m = |A| random sequences of the n jobs, with each
sequence corresponding to an ant a whose weighted earliness
tardiness is za . The best current solution a∗ is the ant a ∈ A
with minimal weighted earliness tardiness: za∗ = min

a∈A
{za}.

Building an initial pheromone trail as recommended in [24]
uses either a∗ or (a portion of) the initial population. This
trail constitutes the acquired knowledge that ants will inherit
from the experience of previous colonies. Herein, the ini-
tial pheromone level of this trail is π(0), an n × n matrix
whose entries π

(0)
i j equal the proportion of times job j appears

in position [i] in the best min{�m/5, 5} ants of the ini-
tial colony. π(0) constitutes the acquired knowledge at the
beginning of generation g = 1; therefore, π(1) is initialized
to π(0).

Step 2: Iterative step This step consists of five tasks. Task 2.1
of Algorithm 1 increments the generation counter g. Task 2.2
builds the gth colony, which has m ants. The kth ant a, k =
1, . . . , m, builds itself by successively filling its positions
[i], i = 1, . . . , n. First, it fetches the acquired knowledge
π

(g)
i j , which is the initial pheromone level corresponding to

positioning job j in [i] in colony g. Second, it computes the
assignment’s attractiveness η

(g)
i j , which is a relative measure

defined as:

η
(g)
i j = 1 − w j E j + w̄ j Tj

max
j ′∈N a

{w j ′ E j ′ + w̄ j ′ Tj ′ } . (14)

123

Author's personal copy

J Sched

That is, Eq. (14) compares w j E j + w̄ j Tj , the cost of assign-
ing job j to position [i], to max

j ′∈Na

{w j ′ E j ′ + w̄ j ′ Tj ′ }, the

highest possible cost of filling position [i] among all alterna-
tive assignments of non-scheduled jobs j ′ ∈ Na . The smaller
the weighted earliness tardiness of job j when assigned to
position [i], the smaller the ratio of the two costs. Ideally, this
ratio should be 0, corresponding to scheduling j on time. In
any case, the ratio can not exceed 1. Subsequently, η

(g)
i j is

bounded by 0 and 1. The closer η
(g)
i j is to 1, the more attrac-

tive the assignment of j to [i] is since it corresponds to a
near-zero ratio.

Third, ant a fills [i] stochastically as a function of the
intensification threshold level q0. It generates a random prob-
ability q from the continuous Uniform[0,1] and compares it
to q0, where q0 is experimentally set to 0.9.

When q ≤ q0, it chooses job j∗ ∈ Na such that
p(g)

i j∗ = max
j∈Na

{p(g)
i j }, where p(g)

i j is the learned desirability

of filling [i] with j. It reflects the degree of suitability of this
assignment compared to the sum of the costs associated with
filling [i] with the candidate jobs in Na . Its numerator is a
pondered product of the acquired knowledge π

(g)
i j and of the

local attractiveness η
(g)
i j of such an assignment. The denom-

inator is the sum of the pondered products over all possible
assignments. The ratio is therefore bounded between 0 and
1. The higher p(g)

i j is, the more desirable the assignment.
Specifically,

p(g)
i j = [π(g)

i j]α[η(g)
i j]β

∑

j ′∈Na
[π(g)

i j ′]α[η(g)

i j ′]β
, (15)

where α and β are two parameters that ponder the relative
importance of π

(g)
i j versus η

(g)
i j . Herein, α = β = 1.

When q > q0, ant a fills [i] with the most locally attrac-
tive job j∗, i.e., with job j∗ such that η

(g)
i j∗ = max

j∈Na
{η(g)

i j }.
Fourth, ant a updates its set of positioned jobs: N a =

N a ∪ { j∗}, and its set of free jobs: Na = Na \ { j∗}. Ant a
pursues its moves until it assigns all jobs, i.e., until Na = ∅.

Last, ant a shares its acquired knowledge with the ants of the
colony via pheromone evaporation and deposit. Specifically,
ant a sets

π
(g)
i j = (1 − ϕ)π

(g)
i j + ϕ

(

1 − w j E j + w̄ j Tj

za

)

, (16)

i ∈ N , j ∈ N , where ϕ ∈ [0, 1) represents both the
pheromone evaporation and the pheromone deposit rates.
It is herein set to ϕ = 0.1. Equation (16) constitutes the
dynamic update of the visibility function. It evaporates a por-
tion ϕ of the existing acquired knowledge π

(g)
i j , and thus only

maintains the portion (1 − ϕ) of π
(g)
i j . It then augments this

Table 1 Example 1 j 1 2 3

p j 1 10 4

d j 11 11 12

w j 20 1 30

w j 30 1 20

knowledge with additional information that is a function of
the deposit rate ϕ and of the quality of the assignment of j to
[i]. In fact, it assesses the contribution of the weighted earli-
ness tardiness of job j with respect to za, the total weighted
earliness tardiness of ant a. Ideally, job j is on-time, i.e., has
a zero weighted earliness tardiness. When j is not on-time,
the smaller its weighted earliness tardiness with respect to
za, the better the assignment is and the higher is the amount
of pheromone deposited, and vice versa. This contribution is

bounded between 0 and 1; thus, the difference 1− w j E j +w̄ j Tj

za
is, in turn, bounded by 0 and 1. Equation (16) illustrates the
myopic nature of the ants. Consider the three jobs of Example
1. When in position [2], job 2 has a zero weighted earliness
tardiness but causes a high total earliness tardiness (i.e., 260)
for ant 1–2–3 (Table 1).

Task 2.3 of Algorithm 1 merges the current and the pre-
vious colonies, ranks their ants in a non-descending order of
their objective function values, and retains the best m ants
as the current colony. In fact, it applies a natural selection
mechanism where only the fittest survive.

Task 2.4 updates the best solution a∗ and za∗ if the best
of the retained m ants of the current colony has a lower
weighted earliness tardiness than the current local minimum.
Task 2.5 applies a global pheromone update for all trails. For
every entry (i, j) of matrix π(g), it evaporates an amount
of pheromone that is proportional to the acquired knowl-
edge π

(g)
i j after the construction of the colony g, thus leaving

only a portion 1 − ϕ of this knowledge. It then deposits
another pheromone amount Δ

(g)
i j , which corresponds to the

proportion of times j has been assigned to i in the best
min{�m/5, 5} ants of the current colony g. The resulting
knowledge serves as the pheromone matrix of the next colony
g + 1. The entries of this pheromone matrix are:

π
(g+1)
i j = (1 − ϕ)π

(g)
i j + Δ

(g)
i j . (17)

Equation (17) constitutes a simple rank-based update mecha-
nism, where each pheromone value π

(g)
i j is first decreased via

evaporation, then increased proportionally by Δ
(g)
i j to rein-

force the “good” traits of the colony.
Step 3: Stopping Criterion If the maximal number of gen-
erations G is reached, the algorithm stops and returns a∗ as
the near-global optimum and za∗ as its value. Otherwise, the
algorithm returns to the iterative step.

123

Author's personal copy

J Sched

In summary, Task 2.2 generates a colony of m ants by
balancing acquired knowledge with new discoveries. It then
merges the ants of colonies g and g − 1, ranks them, and
retains the best m ants. Even though the retained ants are the
best ants identified during the last g colonies, they may be
suboptimal. Enhancing the quality of the retained m ants may
speed the convergence of the ant system toward a near-global
optimum. Therefore, at the end of Task 2.3, the ant colony
system applies a local search. Sections 4.1–4.3 detail three
local searches: pairwise exchange, SA, and VNS.

4.1 Pairwise exchange

The pairwise exchange described in Algorithm 2 is a steepest
descent. The neighbor a′ of a, a ∈ A, is obtained by swap-
ping the jobs in positions [i1] and [i2] such that i2 − i1 ≤ 4.

It replaces a as the focal point of the search if za′ < za . The
returned ant a has the smallest weighted earliness tardiness
among 10(n − 2) investigated neighbors.

Algorithm 2 Pseudo code of the pairwise exchange
Input

• a, an ant, and its weighted earliness tardiness za .

Output
• A local optimum a of cost za .

Algorithm
For κ = 1 to 4

For i1 = 1 to n − κ

For i2 = i1 + 1, i1 + κ

1. Generate ant a′ by swapping the jobs in positions
[i1] and [i2].

2. Compute its weighted earliness tardiness za′ .
3. If za′ < za, set a = a′ and za = za′ .

End For
End For

End For

This pairwise exchange investigates a limited number of
neighbors. To be on time, jobs with close due dates have
to compete for the same time slot. Changing their order
will change their respective completion times and penalties.
Consequently, it might reduce the total weighted earliness
tardiness. Thus, inverting the order of two jobs with con-
flicting interests is more useful than inverting any pair of
jobs as in [5,18] or inserting a job between a pair of jobs
as in [14]. It is possible to determine the jobs with conflict-
ing time windows, but this requires the computation of the
overlap window, a costly computation in comparison to the
calculation of κ deviations. In fact, inverting the order of the
jobs in positions [i1] and [i2] = [i1]+κ requires the calcula-
tion of κ − 1 completion times and κ penalties. It preserves
n − κ penalties fixed.

This pairwise exchange purposely avoids using sequenc-
ing knowledge [26] or dominance properties [12] to make
the approach applicable to all types of scheduling environ-
ments. It can be implemented by inducing several swaps of

jobs as long as the time windows of the concerned pairs do
not overlap. Reaching the global optimum may require more
than a series of pairwise exchanges.

4.2 SA

The SA of Algorithm 3 maintains the computational ease of
the pairwise exchange. It substitutes ant a, a ∈ A, by the
local minimum a∗ in the colony. It uses a T0 = 1.1 initial tem-
perature of the annealing process, yielding a 0.4 = exp−1/T0

initial probability of acceptance of a non-improving solu-
tion. The outer loop determines the neighborhood size κ, and
serves as the stopping criterion (prefixed to 4 plateaus). The
inner loop investigates the neighbors of a. Step 1 generates
a neighbor a′ of ant a by swapping pairs of jobs in positions
[i1] and [i2] of a such that [i2] = [i1] + 1, . . . , [i1] + κ, and
i1 = 1, . . . , n − κ. If a′ improves a, Step 2 moves the focal
point of the search to a′, and updates the local minimum a∗
setting it equal to a′, if need be. Otherwise, Step 2 selects
a random real u from the uniform(0,1), and compares it to
exp−1/Tκ , the probability of acceptance of a non-improving
solution at temperate Tκ of the current plateau κ. The thresh-
old probability of acceptance decreases at every new plateau
κ + 1 : Tκ+1 = 0.95Tκ .

Algorithm 3 Pseudo code of SA
Input

• a, an ant, and its weighted earliness tardiness za .

• T0, the initial temperature of the annealing process.
Output

• A local optimum a∗ of cost za∗ .
Algorithm
Set the current best solution a∗ = a, and its cost za∗ = za .

For κ = 1 to 4
Calculate the temperature of plateau κ : Tκ+1 = 0.95 ∗ Tκ .

For i1 = 1 to n − κ

For i2 = i1 + 1 to i1 + κ

1. Generate neighbor a′ of ant a by swapping the jobs in
positions [i1] and [i2].

2. Compute za′ , the weighted earliness tardiness of a′.
2. If za′ < za,

• set a = a′ and za = za′ ;
• if za′ < za∗ , set a∗ = a′ and za∗ = za′ ;

Else
• draw a random number u from the uniform (0,1);
• If u < exp−1/Tκ , set a = a′ and za = za′ .

End If
End For

End For
End For

4.3 VNS

The VNS of Algorithm 4 applies a more extensive intensifi-
cation to ant a, a ∈ A, than the deterministic and stochastic
pairwise exchange. It considers very large neighborhoods
obtained by swapping every pair of jobs, inserting a job
between every pair of jobs, and inserting a pair of jobs

123

Author's personal copy

J Sched

after every job. Unlike the deterministic and stochastic inten-
sifications where non-improving moves are automatically
discarded or adopted probabilistically, VNS accepts such
moves when the search stagnates. In such a case, it changes
the size or the structure of its neighborhood. It presumes that
a global minimum is a local minimum over all neighborhood
types, that all local minima are close to each other, and that
a local minimum for one specific neighborhood is not neces-
sarily so for a differently structured neighborhood.

Algorithm 4 Pseudo code of VNS
Input

• a, an ant and its weighted earliness tardiness za .

Output
• a∗, a local optimum of cost za∗ .

Algorithm
Set a∗ = a, and its cost za∗ = za .

Set a′, the current focal point of VNS to a, and its cost za′ = za .

For 	 = 1 to 4
For κ = 1 to 3

1. Find the neighbor ȧ ∈ Nκ (a′) with the minimal weighted
earliness tardiness zȧ .

2. If zȧ < za′ ,
• set a′ = ȧ, za′ = zȧ and κ = 1;
• if zȧ < za∗ , set a∗ = ȧ and za∗ = zȧ .

Else
• set κ = κ + 1.

End If
End For
If 	 < 4, shake a′.

End For

VNS consists of two loops. The inner loop starts from
the current focal point a′. It sets κ = 1, and chooses ȧ, the
best neighbor in its neighborhood N1(a′). When ȧ improves
a′, the inner loop changes its focal point to ȧ by setting
a′ = ȧ, and sets its neighborhood type κ = 1. In addition, it
checks whether ȧ enhances the best solution a∗. On the other
hand, when ȧ does not improve a′, the inner loop maintains
its current focal point a′ and increments its neighborhood
counter setting κ = κ + 1. It repeats this iterative step as
long as κ ≤ 3. In fact, it uses three neighborhood types.

When κ = 1, the search considers every neighbor ȧ obtained
by swapping any pair of jobs in positions
[i1] and [i2], i1 = 1, . . . , n − 1, i2 =
i1 +1, . . . , n, of a. There are n(n −1)/2 such
neighbors.

When κ = 2, the search is a 2-opt. It enumerates each neigh-
bor ȧ obtained by reversing the order of the
jobs between any pair of jobs j and j ′, j ∈
N , j ′ ∈ N \ { j}. There are (n − 2)2 such
neighbors.

When κ = 3, the search is an OR-opt. It generates every
neighbor ȧ obtained by inserting the pair of
successive jobs (j, j+1) in reverse order after

every job j ′ of a. There are (n−2)2 neighbors
of this kind.

These neighborhood types preserve a certain portion of the
sequence, and induce relatively small perturbations. How-
ever, they require the re-evaluation of the weighted earliness
tardiness of a large number of jobs. The “size” of the pertur-
bation increases as κ increases.

When the inner loop uses the three neighborhoods, it
returns control to the outer loop, which changes the current
focal point of the search. The outer loop serves both as a shak-
ing procedure and as a stopping condition. Its first iteration
sets ant a as the focal point. Its succeeding iterations apply
a shaking procedure to the best current local minimum a′,
re-centering the search around the perturbed solution. The
shaking procedure randomly selects four pairs of jobs of a′
and swaps them simultaneously. These moves may deterio-
rate the weighted earliness tardiness of a′.

5 Computational results

The computational investigation uses the benchmark instan-
ces of [22] available from http://turbine.kuee.kyoto-u.ac.jp/
~tanaka/SiPS/. They correspond to sets of five instances with
n = 40, 50, 100, 150, 200, 250, 300, τ = 0.2, 0.4, 0.6, 0.8,

1.0, and ρ = 0.2, 0.4, 0.6, 0.8, 1.0, where τ is the tardi-
ness factor and ρ is the range of due dates. These instances
have know optima z∗, obtained within a runtime t∗. The
exact algorithm of [22] was ran on a Pentium IV 524 Mb. For
consistency, all heuristics are run on a similar platform. Sec-
tion 5.1 computationally justifies the design of ACO–VNS
while Sect. 5.2 assesses its performance.

5.1 Importance of intensification and diversification

This section investigates the role of daemon actions, of the
initial pheromone level, and of the ACO diversification.

5.1.1 Role of daemon actions

Consider AS, an ant system without daemon actions, and
ASD, the ant system with pairwise exchange. For n = 40
and 50, we run AS with various population sizes: m =
5, 10, 20, 50, 100, 1000, and number of generations G =
5, 10, 20, 50, 100, 1000, and ASD with m′ = 5 and G ′ = 5.

Let z and z1 denote the weighted earliness tardiness of AS
and ASD, respectively, and t and t1 their respective run times.
Table 2 summarizes the results.

z
z∗ improves as G and m increase, but remains very large

even for m = 1000 and G = 1000. On the other hand, z1
z∗

averages 1.05 over all 250 instances with the minimum and
the first quartile both equaling 1.00. The median is also low.

123

Author's personal copy

http://turbine.kuee.kyoto-u.ac.jp/~tanaka/SiPS/
http://turbine.kuee.kyoto-u.ac.jp/~tanaka/SiPS/

J Sched

Table 2 Mean z
z∗ as a function of colony size, number of generations,

and problem size

n G m

5 10 20 50 100 1000

40 5 3.26 3.19 3.12 3.00 2.91 2.67

10 3.20 3.12 3.05 2.93 2.84 2.62

20 3.14 3.05 2.98 2.86 2.78 2.58

50 3.04 2.95 2.86 2.78 2.70 2.51

100 2.96 2.87 2.80 2.70 2.64 2.45

1000 2.73 2.64 2.60 2.51 2.45 2.31

50 5 3.63 3.58 3.45 3.34 3.25 3.01

10 3.59 3.49 3.40 3.26 3.17 2.97

20 3.51 3.40 3.31 3.18 3.10 2.91

50 3.40 3.30 3.19 3.09 3.01 2.86

100 3.32 3.20 3.12 3.03 2.99 2.82

1000 3.05 3.00 2.92 2.86 2.81 2.66

It equals 1.02 while the third quartile does not exceed 1.07. A
paired statistical hypothesis test infers that there is statistical
proof that the mean ratio z1

z∗ is less than the mean ratio z
z∗ at

any level of significance. This inference highlights the role
of the pairwise interchange intensification in driving the best
solution value toward the neighborhood of z∗ with a limited
number of ants and generations, a non-achievable task for
AS with m = 1000 and G = 1000.

Figure 1 displays the 95 % confidence intervals of the
mean ratio t

t∗ , as a function of G, m, and n, where the ratio
adopts a base 10 logarithmic scale, and both t and t∗ are
expressed in the same time unit (s). The runtime of AS is

less than t∗ for reasonable numbers of ants m and genera-
tions G, but can be much larger than t∗, for very large m and
G. In fact, the runtime of AS increases as a function of n, G,

and m with the positive coefficient correlations being signif-
icant at all levels. Therefore, any ant colony-based heuristic
has to use small numbers of ants and of generations to be
competitive with the exact method of [22] in terms of run-
time. ASD abides to this runtime constraint. It uses only 5
ants and 5 generations. Consequently, it has a very reduced
runtime with a 0.11 point estimate of the ratio t1

t∗ and a lim-
ited standard error of 0.05, i.e., with a (0.10, 0.12) estimate of
the 95 % confidence interval of the mean t1

t∗ . Yet, its solution
values are in the neighborhood of z∗.

The pairwise exchange intensification makes the ant
colony system competitive with the exact approach in terms
of runtime and solution quality. It can be argued that the supe-
riority of ASD relative to AS is due to its larger search space:
m′[10(n−2)G ′+1] ants for ASD versus m(10G+1) ants for
AS. Table 3 reports the average z

z∗ and z1
z∗ for equal numbers

of ants evaluated, and the resulting average run times t and
t1 of AS and ASD.

Paired statistical hypothesis testing confirms that the mean
of z1 is less than the mean of z at any level of significance for
equal total number of ants and that there is statistical evidence
that the mean of ASD’s runtime t1 is less than the mean of AS’
run time t at any level of significance. That is, the pairwise
exchange enhances the search of the ants for good paths, and
requires less evaluations and sorting than AS with a larger
number of ants. However, a statistical t test shows that the
mean z1

z∗ is still larger than 1.00 at any level of significance
even when G ′ = m′ = 25. This suggests that ASD requires

Fig. 1 95 % Confidence
interval of the mean of t

t∗ as a
function of m, G, and n

n

G

m

5040

10
05020105

10
05020105

10
0502010510
0502010510
0502010510
0502010510
0502010510
0502010510
0502010510
0502010510
0502010510
05020105

1.0

0.5

0.0

-0.5

-1.0

-1.5

-2.0

-2.5

t/t*

t=t*

123

Author's personal copy

J Sched

Table 3 Relative performance of AS and ASD for equal total number
of ants

n AS ASD

G m z
z∗ t (s) G ′ m′ z1

z∗ t1 (s)

40 5 186 2.83 0.10 5 5 1.05 0.01

373 2.73 0.18 10 1.04 0.03

932 2.67 0.44 25 1.03 0.07

10 188 2.78 0.19 10 5 1.04 0.03

376 2.66 0.36 10 1.03 0.05

941 2.62 0.88 25 1.03 0.13

25 189 2.70 0.48 25 5 1.04 0.07

379 2.60 0.90 10 1.03 0.13

946 2.56 2.21 25 1.02 0.33

50 5 235 3.12 0.20 5 5 1.04 0.02

471 3.04 0.37 10 1.03 0.05

1177 3.01 0.90 25 1.02 0.12

10 238 3.06 0.39 10 5 1.03 0.05

475 2.99 0.74 10 1.02 0.10

1188 2.96 1.80 25 1.02 0.24

25 239 3.00 0.99 25 5 1.02 0.12

478 2.93 1.85 10 1.02 0.24

1195 2.89 4.58 25 1.02 0.59

a more aggressive intensification mechanism. This is most
likely due to the myopic nature of the move decisions of
the ants in presence of a high level of competition of jobs
for the same time slots on the machine. This is particularly
obvious when a large portion of the jobs are tardy or early. An
analysis of variance of z1

z∗ indicates that the tardiness factor

τ is the only significant factor on z1
z∗ at any significance level

and that n is significant at the 7.3 % level. This can further
be observed in Fig. 2, which displays the 95 % confidence
intervals of the mean z1

z∗ as a function of ρ, τ, and n. When
τ is large (resp. small), the proportion of tardy (resp. early)
jobs is very large, making the pairwise exchange effective in
finding better solutions. For the middle values of τ, the local
pairwise interchange is myopic and can not lead to global
optima.

5.1.2 Role of initialization of the pheromone trail

Next, consider AS1 and ASD1, which are variations of AS
and ASD with additional daemon actions undertaken on the
initial colony. That is, the ants of this colony are subject to
intensification. This is equivalent to implementing the rec-
ommendation of [24] of initializing the pheromone trail.
For G = m = 10, paired comparisons of the mean ratios
z(H)

z∗ , H = AS1, ASD, ASD1, suggest that there is no sta-
tistical evidence that any pair of mean ratios are different
at a 5 % level of significance. However, there is statistical
proof that any of the three mean ratios is different than the
mean ratio of AS at the 2 % level. This is clearly evidenced
by Fig. 3, which displays the 95 % confidence intervals of
the mean ratios z(H)

z∗ , H = AS, AS1, ASD, ASD1. Dif-
ferently stated, enhancing the quality of ants (be them from
colony g = 0, g = 1, . . . , G, or g = 0, . . . , G) helps
the ants identify good paths that lead to near-global min-
ima and overcome their myopic decisions caused by the
sub-optimality of their local moves. Because the mean run-
time of ASD is smaller than the mean runtime of ASD1 at

Fig. 2 95 % Confidence
interval of the mean of z1

z∗ as a
function of τ, ρ, and n

n

tau

rho

5040

1.
0

0.
8

0.
6

0.
4

0.
2

1.
0

0.
8

0.
6

0.
4

0.
2

1.
0
0.
8
0.
6
0.
4
0.
2

1.
0
0.
8
0.
6
0.
4
0.
2

1.
0
0.
8
0.
6
0.
4
0.
2

1.
0
0.
8
0.
6
0.
4
0.
2

1.
0
0.
8
0.
6
0.
4
0.
2

1.
0
0.
8
0.
6
0.
4
0.
2

1.
0
0.
8
0.
6
0.
4
0.
2

1.
0
0.
8
0.
6
0.
4
0.
2

1.
0
0.
8
0.
6
0.
4
0.
2

1.
0
0.
8
0.
6
0.
4
0.
2

1.4

1.3

1.2

1.1

1.0

Z1/Z*

123

Author's personal copy

J Sched

Fig. 3 95 % Confidence
interval of the mean of
z(H)

z∗ , H = AS, AS1, ASD, and
ASD1

Ratio z(H)/z*

H
n

ASD1ASDAS1AS
5040504050405040

4.0

3.5

3.0

2.5

2.0

1.5

1.0

Fig. 4 95 % Confidence
interval of the mean run times

Runtime (seconds)

n
ASD1ASDAS1ASExact

50405040504050405040

0.25

0.20

0.15

0.10

0.05

0.00

any level of significance, it seems reasonable to limit the
intensification to colonies g, g = 1, . . . , G. Figure 4 com-
pares the 95 % confidence intervals of the mean runtime of
H, H = AS, AS1, ASD, ASD1, to the mean runtime of
the dynamic programming-based approach of [22].

5.1.3 Importance of ACO as the diversification mechanism

Let ASS and ASV denote AS with SA and VNS daemon
actions, respectively. The following compares a multiple
restart SA (MSA) and a hybrid GA-SA (GASA) to ASS,
and a multiple restart VNS (MVNS) to ASV. The heuristics
use equal run times, set equal to one eighth the median of t∗
for each problem size. Figure 5 displays the 95 % confidence

intervals for the mean z(H)
z∗ , H = ASD, ASS, ASV, MSA,

MVNS, and GASA.
Figure 5 suggests that ASV and MVNS outperform the

other heuristics, confirming the importance of the VNS dae-
mon actions. In addition, it infers that ACO is more effective
than GA as the diversification mechanism when the daemon
action is an SA. A paired t test shows that the mean of z(ASS)

z∗

is less than the mean of z(GASA)
z∗ at any level of signifi-

cance with the mean difference equaling −0.01008. Finally,
it shows that the diversification using ACO is more successful
than a random multiple restart. A paired t test shows that the

mean of z(ASS)
z∗ is less than the mean of z(MSA)

z∗ at any level
of significance with the mean difference equaling −0.02173.

Similarly, a paired t test shows that the mean of z(ASV)
z∗ is

123

Author's personal copy

J Sched

Fig. 5 95 % Confidence
interval of the mean
z(H)

z∗ , H = ASD, ASS, ASV,
MSA, MVNS, and GASA

Fig. 6 95 % Confidence
interval of the mean
z(H)

z∗ , H = ASV and MVNS, as
a function of problem size

less than the mean of z(MVNS)
z∗ at any level of significance

with the mean difference equaling −0.02719. Figure 6 clari-
fies this superiority as a function of the problem size. In fact,
the effect of using ACO as the diversification mechanism of
VNS is amplified as the problem size increases.

5.2 ACO’s performance

This subsection investigates the relative and absolute per-
formance of ASD, ASS, and ASV. Based on the results of
Sect. 5.1.3, paired comparisons of z(H)

z∗ for H = ASD, ASS,
and ASV, show that there is sufficient statistical proof to
claim that the mean z(ASV)

z∗ is less than both mean ratios for

ASS and ASD at any level of significance, with the mean
difference being respectively −0.13840 and −0.11231. The
mean z(ASV)

z∗ is 1.0041 with a standard error of 0.0003 with
the three quartiles being 1.0001, 1.0012, and 1.0047 while
the maximum is 1.0904.

The same inference is valid when ASD, ASS and ASV
are run with m = G = 10, as evidenced by Fig. 7 which
compares the 95 % confidence intervals of the mean z(H)

z∗
for H = ASD, ASS, and ASV. However, the statistics of
z(ASV)

z∗ are enhanced. The mean z(ASV)
z∗ becomes 1.0020 with

a standard error of 0.0001 with the three quartiles becoming
1.0000, 1.0005, and 1.0023 and the maximum 1.0513. This
maximum (which is an outlier) is registered for n = 300,

123

Author's personal copy

J Sched

Fig. 7 95 % Confidence
interval of the mean
z(ASD)/z∗, z(ASS)/z∗ and
z(ASV)/z∗ as a function of
problem size n

n
ASVASSASD

300250200150100504030025020015010050403002502001501005040

1.5

1.4

1.3

1.2

1.1

1.0

Ratio z(H)/z*

Fig. 8 95 % Confidence
interval of the mean
z(ASD)/z∗, z(ASS)/z∗ and
z(ASV)/z∗ as a function of the
tardiness factor τ and relative
range of due dates ρ

1.016

1.014

1.012

1.010

1.008

1.006

1.004

1.002

1.000

z(ASV)/z*

τ = 0.6 and ρ = 1.0. The mean for this category is 1.0039.
It is the highest among all classes of n, τ, ρ instances. The
values of the first and second quartiles are due to ASV match-
ing the optimum in 122 and 118 out of 125 instances for
n = 40 and 50. However, the number of times z(ASV) = z∗
decreases as n increases. This is expected since the algorithm
is using a reduced number of ants and of generations.

The effect of τ and ρ is clearly illustrated by the 95 %
confidence intervals of the mean z(ASV)/z∗ displayed in
Fig. 8. ASV performs best for low or high τ and worst for
τ = 0.6. Its mean ratio increases as ρ and n increase. There
is statistical proof of the prevalence of these relationships at
any level of significance as supported by analysis of variance
tests.

Paired comparisons of the runtime of H = ASD, ASS,
and ASV with m = G = 10 to the runtime of the exact
method show that there is sufficient statistical proof to claim
that the mean runtime of the exact method is larger than the
mean runtime of H = ASD, ASS and ASV at any level
of significance. This is further evidenced by the comparison
of the 95 % confidence intervals of the mean run times dis-
played in Fig. 9. For the largest instances with n = 300, the
median runtime of the exact approach, ASD, ASS and ASV
are 288.70, 15.36, 29.39, and 92.16, respectively. That is,
ASV is on average three times faster than the exact method
with a 0.2 % average deviation of its solution values from
the optimal ones. Thus, ASV’s near-global minima can be
used as upper bounds for the dynamic programming-based

123

Author's personal copy

J Sched

Fig. 9 95 % Confidence
interval of the mean run times as
a function of problem size

approach of [22]. The most important competitive advan-
tage of ASV in comparison to the exact method of [22] is
its adaptability. ASV can be applied to any machine envi-
ronment or to scheduling constraints such as precedence, set
up, deteriorating jobs, inserted idleness, or objective crite-
rion. This application would involve changing the assessment
mechanism of the ants. Evidently, this adaptability is not
straightforward for the exact method of [22].

6 Conclusion

This paper addresses the minimum weighted earliness tar-
diness single machine scheduling problem with distinct
deterministic known due dates and no idle time. It approx-
imately solves the problem via an ant colony optimization
variable neighborhood search system. It shows that dotting
an ant system with daemon actions that intensify the search
around the ants of each colony enhances the efficacy of the ant
system. In addition, it improves the efficiency of the ant sys-
tem which converges to near-global optima with a reduced
number of ants and generations (thus a smaller runtime).
It further shows that daemon actions that consist in a vari-
able neighborhood search yield (near-)global optima in most
instances. Finally, it highlights the utility of diversification
via ant colony optimization. The proposed approach can be
easily extended to more complex scheduling problems with
different job environments and constraints, and to other com-
binatorial problems where the short-term optimal decisions
of the ants regarding their immediate moves from one state
to the next are not necessarily globally optimal.

References

1. Behnamian, J., Fatemi Ghomi, S. M. T., & Zandieh, M. (2010).
Development of a hybrid meta heuristic to minimise earliness and
tardiness in a hybrid flow shop with sequence-dependent setup
times. International Journal of Production Research, 48(5), 1415–
1438.

2. Blum, C. (2005). Beam-ACO-hybridizing ant colony optimization
with beam search: An application to open shop scheduling. Com-
puters & Operations Research, 32, 1565–1591.

3. Bulbul, K., & Kaminsky, P. (2013). A linear programming-based
method for job shop scheduling. Journal of Scheduling, 16(2), 161–
183.

4. Gagné, C., Price, W. L., & Gravel, M. (2002). Comparing an ACO
algorithm with other heuristics for the single machine schedul-
ing problem with sequence-dependent setup times. Journal of the
Operational Research Society, 53, 895–906.

5. Holthaus, O., & Rajendran, C. (2005). A fast ant-colony algorithm
for single-machine scheduling to minimize the sum of weighted
tardiness of jobs. Journal of the Operational Research Society, 56,
947–953.

6. Huang, K. L., & Liao, C. J. (2008). Ant colony optimization com-
bined with taboo search for the job shop scheduling problem.
Computers & Operations Research, 35, 1030–1046.

7. Kim, Y., Lim, H. G., & Park, M. W. (1996). Search heuristics for a
flow shop scheduling problem in a printed circuit board assembly
process. European Journal of Operational Research, 91(1), 124–
143.

8. Li, H., & Zhang, H. (2013). Ant colony optimization-based multi-
mode scheduling under renewable and nonrenewable resource
constraints. Automation in Construction, 35, 431–438.

9. Liaw, C. F. (1999). A branch and bound algorithm for the single
machine earliness and tardiness scheduling problem. Computers &
Operations Research, 26, 679–693.

10. Lo, S. T., Chen, R. M., Huang, Y. M., & Wu, C. L. (2008).
Multiprocessor system scheduling with precedence and resource
constraints using an enhanced ant colony system. Expert Systems
with Applications, 34(3), 2071–2081.

11. Marimuthu, S., Ponnambalam, S. G., & Jawahar, N. (2009).
Threshold accepting and ant-colony optimization algorithms for

123

Author's personal copy

J Sched

scheduling m-machine flow shops with lot streaming. Journal of
Materials Processing Technology, 209, 1026–1041.

12. M’Hallah, R. (2007). Minimizing total earliness and tardiness on a
single machine using a hybrid heuristic. Computers & Operations
Research, 34(10), 3126–3142.

13. M’Hallah, R. (2014). An iterated local search variable neighbor-
hood descent hybrid heuristic for the total earliness tardiness per-
mutation flow shop. International Journal of Production Research,
52(13), 3802–3819.

14. M’Hallah, R., & Alhajraf, A. (2008). Ant colony optimization for
the single machine total earliness tardiness scheduling problem.
Lecture Notes in Computer Science, 5027, 397–407.

15. M’Hallah, R., & Alkhabbaz, A. (2013). Scheduling of nurses: A
case study of a Kuwaiti health care unit. Operational Research for
Health Care, 2(1–2), 1–19.

16. M’Hallah, R., & Al-Roomi, A. (2014). The planning and schedul-
ing of operating rooms: A simulation based approach. Computers
& Industrial Engineering, 78, 235–248.

17. Muller-Hannemann, M., & Sonnikow, A. (2009). Non-
approximability of just-in-time scheduling. Journal of Scheduling,
12(5), 555–562.

18. Parthasarathy, S., & Rajendran, C. (1997). A simulated annealing
heuristic for scheduling to minimize mean weighted tardiness in
a flow shop with sequence-dependent setup times of jobs–A case
study. Production Planning and Control, 8(5), 475–483.

19. Rocha de Paula, M., Ravetti, M. G., Mateus, G. R., & Parda-
los, P. M. (2007). Solving parallel machines scheduling problems
with sequence-dependent setup times using variable neighbour-
hood search. IMA Journal of Management Mathematics, 18(2),
101–115.

20. Schaller, J., & Valente, J. (2013). A comparison of metaheuristic
procedures to schedule jobs in a permutation flow shop to minimise
total earliness and tardiness. International Journal of Production
Research, 51(3), 772–779.

21. Tanaka, S., & Fujikuma, S. (2012). A dynamic-programming-
based exact algorithm for general single-machine scheduling with
machine idle time. Journal of Scheduling, 15(3), 347–361.

22. Tanaka, S., Fujikuma, S., & Araki, M. (2009). An exact algorithm
for single-machine scheduling without machine idle time. Journal
of Scheduling, 12, 575–593.

23. Tasgetiren, M. F., Liang, Y., Sevkli, M., & Gencyilmaz, G. (2007).
A particle swarm optimization algorithm for makespan and total
flowtime minimization in the permutation flowshop sequencing
problem. European Journal of Operational Research, 177, 1930–
1947.

24. Tavares Neto, R. F., & Godinho, Filho M. (2013). Literature review
regarding ant colony optimization applied to scheduling problems:
Guidelines for implementation and directions for future research.
Engineering Applications of Artificial Intelligence, 26, 150–161.

25. Wan, L., & Yuan, J. (2013). Single-machine scheduling to minimize
the total earliness and tardiness is strongly NP-hard. Operations
Research Letters, 41, 363–365.

26. Zegordi, S. H., Itoh, K., & Enkawa, T. (1995). A knowledgeable
simulated annealing scheme for the early/tardy flow shop schedul-
ing problem. International Journal of Production Research, 33(5),
1449–1466.

123

Author's personal copy

	Ant colony systems for the single-machine total weighted earliness tardiness scheduling problem
	Abstract
	1 Introduction
	1.1 Problem definition
	1.2 Motivation of solution approach
	1.3 Contribution and outline

	2 Problem formulation
	3 ACO
	4 The proposed ant colony systems
	4.1 Pairwise exchange
	4.2 SA
	4.3 VNS

	5 Computational results
	5.1 Importance of intensification and diversification
	5.1.1 Role of daemon actions
	5.1.2 Role of initialization of the pheromone trail
	5.1.3 Importance of ACO as the diversification mechanism

	5.2 ACO's performance

	6 Conclusion
	References

